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Answer ALL questions.:






(4 x 25 = 100 marks)

1. a)
(i) Show that 
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(ii) Let X and Y be topological spaces and let 
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Show that the following statements are equivalent:

1) 
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 is continuous. 
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2) For every subset A of X, one has 
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3) For every closed set B in Y, the set 
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is closed in X.   (8)


b)
(i) Show that the space 
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 in the products topology is metrizable. (17)





(OR)



(ii) Let 
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be a function where X is metrizable. Show that the 

function 
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is continuous iff for each convergent sequence 
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(iii) State and prove Uniform Limit theorem.  (8+9)

2. a)
(i) Prove that every compact subset of a Hausdorff space is closed.

(OR)



(ii) Let X be a nonempty compact Hansdorff space. If every point of X is a 

limit point of X, prove that X is uncountable.   (8)

b) (i) If L is a linear continuous in the order topology, prove that L is connected and so is every interval and ray in L.
(OR)



(ii) Let X be a metrizoble space. Show that the following are equivalent:

1) X is compact.

2) X is limit point compact

3) X is sequentially compact.  (17) 

3. a) 
(i) Show that a product of regular space is regular 
(OR)



(ii) Show that a regular space with a countable basis is normal. (8)


b)
(i) State and prove Tietze extension theorem.






(OR)

(ii) State and prove Uryshon’s metrizetion theorem.   (17)

4. a)
(i) Show that the space 
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 is complete in the uniform metric where the 

space Y is complete.



(OR)

(ii) State and prove extension property of Stone Cech compactification (8)

b) 
(i) State and prove Alcoli’s theorem






(OR)



(ii) State and prove Tychonoff’s theorem. (17)
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